GAIN LIMITATIONS ON EQUALIZERS
AND MATCHING NETWORKS

by

HERBERT J. CARLIN
Research Report R-375-54, PIB-309
for
OFFICE OF NAVAL RESEARCH
Contract No. Nonr-839(05)
Project Designation No. NR-075-216

April 22, 1954

MRI

e

POLYTECHNIC INSTITUTE OF BROOKLYN
MICROWAVE RESEARCH INSTITUTE



THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DoD DIRECTIVE 5200,20 AND
NO RESTRICTICNS ARE IMPOSED UPON
ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

" APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,



Microwave Research Institute

Polytechnic Institute of Brooklyn
56 Johnson Street

Brooklyn 1, New York

Report R-375-54, PIB-309
Contract No. Nenr-839(05)

GAIN LIMITATIONS ON EQUALIZERS
AND MATCHING NETWORKS
By
Hervert J. Carlin

Title Page
Acknowledgement
Abstract

21 Pages of Text
4 Pages of Figures

Brooklyn 1, New York
April 22, 13984



R-376-54, PIB-3

ACKNOWLEDGEMENT

The research and development reportsd in this paper were
sponsored by the Office of Naval Research under Contract No. Nonr-839(05).



R-375-64, PIB-309

ABSTRACT

If an equalizer amplitude response curve is specified, it will bve
shown that the minimum flat loss obtainable with physiceal networks is de-
termined. This flat loss, or scale factor on the response ourve, iz a
function of the equalirer output terminating impedance which is arbitrary
but prescribved, and the spescified tolerance on input mismatch.

If the output impedapce is purely reactive, the limitations on
maximum voltage transfer are obtained from a consideration of the open circuit
impedance parameters of the system. If power or voltage transfer to a load
with finite real part is to be optimized, the scattering parameters of the
system are used to determine the limits of performance.

Examples will be given comparing the performance of matched and

lossless equalizers. In many practical cases the latter do not have sub-
stantially higher gain than the matched equalizer.
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I* Definition of Equalizer Problem

The equa.izor problem considered here concerns the transfer of
voltage, current, or power from a prescribed generator witi resistive internal
impedance to a load whose impedance is a given function of frequency. It is
presumed that a real frequency function is specified which defines the shape
of transfer gain characteristic desired, and it is required to find a passive
linear reciprocal equalizer network (a two terminal pair transducer, or two-
port) which when placed between generatcr and load produces the specified gain
shape and does so with maximum scale factor i.e. minimum flat loas. A gain
characteristic which ideally is constant over a finite frequency band and gero
elsewhere wili te of major interest, and many of the results given may there-

fore be ragarded as generaligations of the concept of maximm "gain-bandwidth
b2 ins B g
product”.

An additional specification is the tolerance on input mismatch. It
is only because the equaliter networks investigatsd here are not limited to
the lossless case that this spacification can be set independently of the
others. In mozt sf the examples given beiow the extremes of a matched input
dissipative equalizer (zero mismaich) and a completely lossless equalirzer
(but not matched) will be compared.

Various aspects of the equalizer problem have been previously con-
sidered. Bodel discusses the limitations on "gain-bandwidth" product imposed
by a load with shunt capacitance when a lossless equalizer is used, and also
gives some consideration to matched equalizers for voltsge transfer to a
reactive load?. Fano® has treated the problem of oEtimum match of an arbitrary
load with a lossless network and La Rosa and Carlin%,5,6 have examined this
problem when the lossless restriction on the matching network is removed.
Norde” has treated matched minimum phase voltage equaligers for reactive loads.
Other work on special aspects of "gain-bandwidth" product is too extensive to
be given here. Wheeler8 and Hanvend are typical refersnces.

The present paper considars the gensral approach to any equalizsa-
tion problem and stems directly from the references cited above. The results
presented on optimum voltage transfor to an arbitrary load (including the
purely reactive load csse) have not been given elsewhere.

II. General Approach to Equalirzation of an Arbitrary Load

There are two basic restriotions which govern the design of an
equalizer network. One of these is the general requirement of physical re-
alizability on the overall network which includes both equalizer and pre-
scrived load. The vther is the total set of constraints specifically imposed
by the load and this should be entirely independent of the equalizer net-
work. If these constraints are satisfied, then when the overall network is
synthesized, and the given load removed, the remeining circult (the equalizer
alons) is physically realizable. The form in which these restrictions are

*ﬂﬂsvaspresented at the IRE Natignal Convention585wpusium on Network
Equalization, March 24, 1964.



R-375-64, PIB-309 2

stated mst be such as 4o sxplicitly {(mnd preferably in a simple way) in-
volve the transfer gain function whoss scale factor is to be maximired. The
process of finding the optimm equalization is then tc adjust the gain func-
tion within thesa general restrictions until the limits of physical real-
izability are attained.

The constraints which apply to the equalization of a load containing
dissipaticon (the purely reactive load case is considerasd later) are most
readily obtained by representing the prescribed load over the infinite fre-
quency spectrum as & purely reactive 2-port with fixed elements terminated in
a unit resistor. _(Hereafter the generator resistance will be presumed normal-
ized to unitylo:ll- This representation is always posasible and the single
resistor is sufficient to acoount for all the power dissipated in the load.)

The "overall network" is now defined as the equalizer plus the reactance two
port portion of the load.

Ty,

In order that the "overall network” bve phyaically reeiizable, it
mst have an array of scattering coefficientsi2 Sy; (p), S22 (p), S12 (p)
whioh form the matrix of a positive definite or semi-definite Hermitian form
for Re pg0 5,6,12,13,  The algebraic expression of this requirement gives
the general set of realirzability constraints previously referred to.

The specific load oonstraints sre obtained from the fact that at
certain real and complex frequencies no power can be transferred to the load
nc matter what equalizer network is unsed. These frequencies are the points on
j» and in the right hand half of the p plane at which the reactive 2-port
portion of the load has tercs of transmission. At these frequencies the trans-
mission factor cf the ovarall network Sj2o (p) mist gsenerally have a zero of
transmission of order Zn if the load zero is of order n. PFurther the reflec-
tion fector looking in at the back end of the "overall network™ i.e. Sgz (p)
and generally its ®i»3sti Z2n-i derivatives are completely determined by the
reactarnce 2-port portior of the load. These properties follow frem a con-
sideration of the scattering equations for the cascade connection of a pair
of two-ports3, and constitute the "load constraints™ referred to earlier. It
mast be emphasized that load constraints are independent of the equalizer.

The load conrstraints amount to the statement that essentially the
first 2n Taylor cceffizlents of the back end reflection factor of both load

and overall network are equal in the series expansion about a load zero of
transmission,

These requirements may be expressed in terms of the Cauchy formulas
for the Taylor coefficisnts, and as & final result cne obtains integral formlas
for the logarithm of tre amplitude of the bauck end reflection factor. If the
overall network is specified so thet it satisfies the general realizability
requirements and in addition meets the limits on 1ln Tl/@zz(jm)T imposed by the
integral formulas, then the prescribed load can always be separated from the
overall network leaving a physically realizehle egualizer 2-port. A stetement

3

of these realizavility conditions in the form of a theoram essentislly as
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given by La Rosa4,5 is as follows:

Thecrem 1

The necessary and suffiolent conditions that a scattsring matrix
[s( z] (p =6”+ jw) represent an overall network composed of an equalirzar in
€andem with a prescribed lossless 2-port (the reactance 2-port portion of the
orescribed load) is:

(a) Matrix [[S_] should be realizable i.e. I -5 (ju) '[5 (ju)]
must be the matrix of a positive definite or semi-definite hermitian form,
with [:St] symmetric and its elements rational functions of p with reel coef-
ficients, and no right half plans poleas.l3

(b) Right hand and boundary zeros of transmission of the load must
appear in the transmission factor S12(p) of the overall network with at lesat
the same multiplicity.

(c)* A set of integral restrictions on in |1/Spy (Jw)| of the form

1.
of fi ('J)) 1n |-§2—2——(—j;-)‘ dw Ki (1)

mgt be cimltaneously satisfied at all the zerovs of transmissicn of the
load. Each nth order zoro contributes Ny integral equations with

n for & zero at zero or infinity
¢n for a zevo or jw
2n-no for a right hand zero on the real axis

&3n-2n0 for a conjugate palr of zeros in the right half plane.

ng is the order of any right half plane zero of load transmission coincident
with & zero of back end load reflection factor, i.e. of the rsactsnce 2-port
portion of the load.
This theorem can be applied in a direct and simple fashion to a
riety of equalizaticn problems involving a load contalning dissipative
elements. Special consideration will be required for problems involving a
purely reactive load.

ITII. Power Transfer Equalirstisa

The application of the theorem given in the preceding section re-
quires a determinaticn of the rslaticnships between the transfer function

.The weighting functions fj(w) are tabulated by Fano®. The Ky are related to
the Taylor coefficients of the load at the zeros of transmission and are also
tabulated in the same reference.
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which is to be optimized and the reflection factor amplitude of ths ovurall
network [S22(jw)|. The integral equations can then be used to determine
"gain-bandwidth" type of restrictions on the equalizer. Part (a) of the
thecrem contains the necessary information for relating the reflection factor
function Szz(jw) to the equalization response of the overall network. In the
case of power transfer frcm a generator with unit internal impedance to a
load (represerted in Darlington form), the insertion power gain at real fre-
quencies of the overall network normalired to the available generator power is

jo

| [s,, (30)]? (2)

Py is_the power delivered to the load, Pg is the available generator power
(1Vg|3/4, where Vp is the generatcr open-circuit voltage) and [S12(jw)| 1s

the "amplitude of the voltage transmission coefficient of the overall network.
Since this power transfer funotion is an elemeat of the scattering matrix, it
is directly related to |Spp(jw)| by the general realizebility constraints of
part (a) of the theorem. La Rosa®,6 nas shown that this portion of the theo-
rem leads to the following necessary requirement on lslz(jm)l for an equalizer
which maximizes the scale factor of power function when the shape is specified.

[S1(30) )% = (1 = [8,,(30)]) (1 + [S7(3e)]) [8,(Je)1 ] (845 (Jo)] (3)

In equation (3), [S7;(Jw)]| is = spsc
amplitude function which sets the tolerance on
ocase that the equalizer ig lossless, [Sll(jw)l
becomes

ified input reflection factor
inﬁut mismatch. In the a?ecial

Szz(jm)‘ and equation (3)

181,(30)1% = 1 = [8,,(j0)]? (4)

(losslese equalizer)

In another special case where the input mismatch is zero i.e. Sll(P) = 0
equation (3) reduces to

815030 ]2 = 1 = [8,,(ju)| (5)

(matched equalizer)

Equations (3), (4), (5) give the desired relations between

!S o(jo)| and the power transfer function [S1p(jw)]2. The integral equations,
1%, may therefore be expressed in terms of the power transfer function and
solved to obtain the maximum scale factor. The details of this procedure as
well us examples are given in reference4,5,6. The solution of the equations
always gives a unique maximum-gain scale factor for a prescribed shape of
power transfer function and this cannot be exceeded by any physical egualizer.
In the case where the equalizer is to produce a flat pass band with zero gain
outside this band, the solution for the scale factor is particularly simple
and is found directly in terms of a minimum constant value of [Sp,{jw)| = [322‘
over the prescribed band with [Sg.(iw)]| = 1 elsewhere. In t ls case it is in-
teresting to compasre the optimum lossless and matched equali.ers using
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equations (4) and (5)
2 (lossless)

8
10 log ' l?J“ = 10 log (1 + IS’ZI)S 3 db (8)
81,12 (matoned) 2

since 'Szg' £€1. In any practical design of a fiat power equalizer [Szzl is
considerably less than one so that over s specificd baud the gain of an optimum
me.toched design is muoh closer to the gain of an optimum losslees equalizer than
the outside limit of 3 db given bty equation (6).

IV. Voltage Transfer Equalization of General Dissipative Load

A. Integral Constraints for Voltage Transfer

The theorem given in section 2 may be applied to the problem of
voltage equalization provided the voltage transfer function cean be related
ts the scattering coefficients of the overall network. The voltage trensfer
function at real frequencies is taken to be

e - |;§4 (7)

whers §V2i is the amplitude of the voltage appearing across the load eand (vl
is the open circuit ?fixed) voltage amplitude of a normalized generator with
unit internal impedance (pure resistance).

The generator produces a voltage V'p across the one ohm rssistangs
in the Darlington representation of the load as a reactance 2-port terminatsd
in uhit resistance as shown in Fig. MRI-13993. This voltage is related to
V] by the voltage scattering function Sjo(p) of the overall network (Fig.
MRI-13993). Thus >

1
v, = SIZ(P) 7 (8)

Since the power at the input to the load is the same as that de-
livered to the ons ohm vesistor in the Darlington representation

2 , 2 .
TP g = 7] ()
where g(o) is the input conductance of the iocad.
Ccmbining equations (7), (8) and (9)
2 2
v . [S12(50)]
C B o) = e (10)
Vi1 4 gle)
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Sinoe [S15(3w)]2 ¢ 1 it is immediately clear that in any physical
network

2
R ¢ 1

£ m (11)

In equation (10{ g(w) is specified by the load alone and R is
directly proportional to [S3 (3 ;. Thus a necessary requirement for maximum
voltage transfer is to maximize 12(jo)| consistent with the general theorem
on roalirability given earlier. This is saccomplished precisely as in the
power transfer problem when &Slf(;a)[ and &Sll(jw)l (prascribed) are related
4
»

to Szz(jm)[ by equations (3 , and (6). The general equation for optimum
voltage transfer mey then be written as
2 .
e (2= 1505 (G v {5,(de)]) (12)
4g(w)
[822(3m)';’lsll(3m)‘
The lossless and matched cases are then given as
. 2
1 - (S w
L3 - ' 22(3 )[ {iossless) (13)
4 g(w)
2
R 1 - 18,,(j) .
' = 22 l (matohed } (14)
4 glo)
The integral equations for the lattsr two cases using equation (1)
are:
1 b ;
5 £,(0) 1n( 5 —) . dw = K (1ossless) (15)
() 1 - 4Q° (o) glw)

£.(0) 1n ( L . do = K, (metohed) (16)
j 1 1- 4g%0) g(w)) ! ” }

The wéighting functions fj{w) and the parameters Kj; are those
tabulated in reference 3.

The only difference in form for the integral constraints in ths
two special cases is the factor 1/2. However, since @ appears under the
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integral sign the solution for maximum scele factor is generally formed from
s transcendental equztion so that there is no direct relation between the
J0ltage gain of lossless and matched equalizers sven in the flat transfer
cagse. In this latter case

2

C w mémz

2
R (0) =

<
0 £ QK0 oL =

where C is the voltage gain constant to be maximized. The integrals (15) and
(16} are then

[:3)
2
1 1 o : .
5 Jl‘ fi(m) 1n (1 - 401 ) . do = K (1ossless) (18)
)
/ £, (o) 1z ( 12 e dw = K, (matohed) (19)
w 1- 4. glo! .
1

In effect the problem of a flat voltage equalizer reduces to the

solution of a power transfer probiem where & non-flat power gain curve shape
is specified.

B. Example - Flat Voltage Equalizsr for R-L load

As an example of & voltage equalizer problem consider the case of
& load consisting of the series combination of coil L and resistor R. The
voltage transfer characteristic is to be a high pass one specified by:

C x [V
s c€*¢ (20)

0 0L x(xc

where x is a normalirzed frequency variasble and x. is its cut off value:

Ny :
x wR (21)
xc = a)c -%— (22)

The load conductance is

1
S(X) = —112— ;—T;é' (23)
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Since the load has only a simple zero of transmission at infinity
the weighting function f(®) is unity and the integration constant Kj is given
bysg

n R
kK¢ — (24)
L

The possibility of attaining the equal sign in equation (z4) is
dictated by equstion (11). If eguation (22) 1s substituted in that equation
then an upper bound is set on @<{x) for any value of x:

R%(x) g B+ ) (25)
4

The permissable value of voltage gain increases with x, and thus
for flat response

2 2
i ¢ 2 LA x ) (26)
'

Since the lowest permissable gain occura at cut-off. The upper limit for

E=-= !}i,pan only be attained if the value of C required in the integral
equations does not violate equation (26). The integral relations given by
equation (18) and (19) become:

m 2
R ‘ x +1 iR Y
o 57
A I / 1n 3 3 x & & A (27)
x X <+ a
c
whdxe 1 Matched case o
A= (28)
-2]L losslesr case
nl
and o2 = 1 - 485 (29)
R
For l.z 2 0 integration of equation (27) gives
, 1+ x; -1 e 2
. n(1l-a) - x, 1n :2—-:—;-2- - 2 tan © x_+ 2a tan —-—Q-a = n/A, a 20 (30)
s}

The equal sign is used in order to determine whether the wvalue of
a (hence C by equation (29)) exceeds the limit of equaticn (26). When A = 1,

the only real solution for a in equation (30) oocurs when x, = 0. In that
case:

a= g -O' C-g— (31)
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The limit of equation (26) for xg = O is alsc C = B/2, so that for
filat transfer over 0L x4 @, the maximum value permitted by the intejral con-
straint for a matchwy equalizer can be obtained and this flat gain is preoisely
the d.c. gain. A lossless equalizer would give no gain adventage, sinoe the

the solution of equation (30) with A = 1/2 results in a value af C exoeeding
that permitted by equation (286).

For wvalues of xg > O, negative values of az are required to satiasfy
equatiorn (30). Under these conditions the transcendental egquation becomes:

2
x. +1 X, - b =) n
. oL -
- X 1n ;g_:_;f_"+ b 1n x 7% +2tan x - g (32)
°
Where 2
2
CICIEE (33)

For values of 0{5: £1.9, the solution of eguation (32) for C
elways exoeeds that permitted by equation (26) for both values of A (lossless
and matched cases). In this region, where the value of oL/R is small at
out-off, the optimum flat gain is given by equation (26)

R (1 + xi)
C = ——, 0<x £1.9 (34)

and the lossless equalizer gives no advantage in gain over the matched equal-
izer. For the medium range of 1.9 <x,< 4.8, the flat gain of a matched equal-
izer as obtained from equation (32) is less than that given by equation {(26),
while the gain of the lossless equalizer is still limited by equation (28).
Finally for the high range 4.8< xc¢ @, both 1cssless and matched equalirers
have gains limited by the solution of equation (32).

When x; is very large equation (32) is approximated very well by:

4 mn

b &]-2+-—-:c,xc>>1 (35)
Using equation (33), the optimum gain in this case is
— -
¢ = E/z . o
2 A
w. L
B et (2e)
2 x, o >1 (36)
21 o
2 A o J

—

Thus as the load resistance becomes negligible compared to the
load reactance at cutoff, the ratic of maximum flat gain of lossless (A = 1/2)
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and matched (A = 1) equalizers becomes:

C (lossless) _ \/?r-. (37)

C (matohed)

The comparison of performance of lossless and matched equaligers
for a flat high pass gain charaoteristio is summarized in graphical form in
Fig. MRI-13994. The heavy line is the bounding ourve defined by equation (22},
and <ihe dashed curves show the marimum flat gain of the lossless and matohed
equalizers as prescribed by the integral oonstraints.

V. Voltage Transfer Equalization of Reactive Load

The oase of optimum voltege transfer from a finite generator to a
reaotive load is an important practical prcblem. However, the basic real-
izability theorem quoted in Section 2 is not readily applicable. Accordingly
this equaliration problem will be treatcd in a somewhat different way through
the general point of view outlined in Section 1 will still be used. The
optimum voltage equalization of an arbitrary lossless termination has not been
considered in any complete fashion elsewherc¢_ so that some details of the
derivation of the realizability eriteria (ge - 2l constraints plus load cou-
straints) will be given here. This will also serve to further illuminate the
basis for the realizability theorem 1 of Section 2 since the two derivations
parallel each other. It will be seen that whereas the scattering coefficients
were a natural tool for handling the equelization of a dissipative load, the

open circuit impedance elements are more directly applicable to the resotive
load problem.

In Fig. MRI-13995a a finite generator of voltage V3 and unit inter-
nal resistance is shown driving en equglizer terminated in an arbitrary react-

ance. The amplitude ratio of output load voltage to open circuit generator
voltage is

Q - |2 - |z, (m)l (igonemeii) (388

- s e

at the generator side by a 1 ohm resistor and &% the output side by the
raactive load.

If the equalizer is designred to produce an input match, then the
voltage ratio may be written as:

V.
e - ';Z* = %-[zlz (m)' {matched equalizer) (38)
1
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whsre |Z7p{w)|is the ampiitude of the open oircuit transfer impedance of the
msatching equalizer plus lossless losd. (Generator resistance is not included.)

If the equalizer is lossless then in Fig.MRI-13996b with excitation
at the load side of the overall network, the power delivered here is equal to
that dissipated in the 1 ohm shunting resistor. Thus

9 = 2 = 2 .
Q"= |2y (w)" - |Z12(w)|° = R,,(®) (lossless equalizer) (39)
where ﬁzz(m) is the real part of the open ocircuit output driving pcint im-
pedance of the overall network on jw:

- \ -

] (s} = "o
“w, b
I A

{
b
(S]]

22(jw) (40)

Sinoce the equaligation functicuns to be optimized (equations (38),
(39)) involve the open circuit impedance parameters, the requirements on
overall network physical realizability will be expressed in terms of these
varameters. The necessary and sufficient conditions that an open circuit im-

pedance matrix correspond to a physical 2-port is that the matrix be positive
reall4, That is

&) B () R, (a) - R @) 3 0, R ()3 0 (41)

b) The opepn circuit impedances have no poles in the right half plane.

c) Imredance element poles on the boundary be simple and the residues of
Zlg(p),Z'll(p)anﬁ Zoo(p) at these poles satisfy

2

811%p " 815 O

a7 ¢

Equation (41) is the major physical constraint in the equalizer
problem since if this is satisfied the remaining two requirements can in
general be met by suitable design o the actual equalizer network.

The constraints of the load can be easily established by observing

that the resctive load impedance Zp(p) is in parallel with the impedance sooxn
looking in at the back of the equalizer. Thus

Z
222 = EZE_:LE__. (42)
Z22 L
t.. 7
22 "L 7
Zog = = (43)
222 + ZL

where 222 is the back end open circuit driviag point impedance for the
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equaligzer plus load with the 1 ohm resistor at the input removed, and izz is
a similer quantity for the overall network of Fig. MRI-13995b. (zgs is back
end equalizer impedance)

Any zero of the reaotive load must be simple and occur on ju.
Further if Zj, is expanded in a power series at this zero, the first non vanish-
ing Taylor coefficient is pesitive.* Inspection of equation (42) and (43) show
that the back end impedance Zzp or Zpp must vanish at this point end in the
vicinity of the zero, p; = Jug:

Z,,(p) = Z,5(p) = 2;(p) = a;(p-p,) Pap; (44)

Bouation (27) is in faot entirely independent of the equalizer and its input
termination.

The requirement that the back end impedance of the overall network
be constrained by equation (27) oan be expressed in integral form by using
the Cauchy formlas for Teylor coefficients. These take the form in the
present instance of1

gl-;-j é 8,(P) Zy5(p) dp = a, (45)

where the closed path of integration is slong jo (avoiding by small semi-
oircular indentations any boundary poles) and is oompleted around the semi..
circle of infinite radius enciosing the right half p plane. g;(p) ure the
weighting functions to select the appropriate Taylor coefficient of the load,
aj. If the contributions of the small indentations are accounted for, and
gi(p) is modified slightly to be even in w along jw, equation (45) may be
written in terms of Rps(w) as follows:

n

b
2R (w) do = 20 _g -2 (zero at p = o) (46)
mz 22 2 of
(o] m

m

~
AT

na
= .2 ¢ - 47
j Rzz(m) dw == =X E b (zero at p = ac) 47

o
m

This folliows from Foster's reactance 'theoremﬂ15
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1 L <" __bam
] £ -l Rple) do = =5 on > = 22 (sSrotatipiart oy
[+}

(48)

mm % ©

In every case by is the residue of any Zg5 poles on jo and is always
positive. Suoh poles can only reduce the permissable integration oonstant.
The only other possibility of reducing the right hand sides of equation (46),
(47), (48) is for zz3 (or Zzolofike equalizer to have a zero ooinocident with
Z1,. Since these relations must all be satisfied simultaneously by Zgg'(or
222), it may ve neceasary to introduce elements in the equalizer which cause
ooincident reros and/or additional poles on Jo. Another point which should
s mentioned here is thet referring to equation (44), equations (46), (48),
(47), (48) are walid both for the barred and unbarred quantities.

Finally since any zero of the load is a gero of voltage transfer,
the following physical realizability theorem may be stated:

Theorem 2

The necessary and sufficient conditions that a combined network

cornsisting of a two port end a prescribed reactive termination be physically
realieshie is

a) The combined network must have a positive real open circuit
impedance matrix.

b) All zeros of the reactive load impedance must be contaired in

the open cirsuit transfer impedance of the combined network.
(The zeros are all simple.)

c) The integral constraints given by equation (48), (47), (48)
and summarized by the form

f £,(0) Ryy(0) do = K (49)

mst be simultaneously satisfied by the back end resistance
of the combined network at each zero of the load.

The similarity between this theorem and theorem 1 is o%vious.

VI. Flat Gain Egualisetion of a Reactive Load

A. Form of Imntegral Constraints

As an example of the application of theorem 2, the case of flat
voltage transfer for a prototyve low pass equalizer defined by:

° Y
PO T | N—" P

5
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- (-
R - H_?_' - lzlz(“’)l _4 ¢ for 0w &l (80)
1 L'O for 1< o

will be sxamined.

In the ocase of the matohed equalizer’ condition a of theorem 2 leads

o
(o]

Rzz(w) - nig(m)zo (Matohed egqualizer) (61)

This is obtainsd from equetion (41) with Rjj(w) = 1, 0&w oo

Ry, (@) -IZIZ(w)I oos (¥ (w) + 8(w)) (62)

Where ‘£ is the minimum phase characteristic of the combined nstwork
(equalizer and load), and 8{(w) any phase characteristic obtained with a
tandem combination of unit voltage transfer networks, considered as part of
the equalizer (i.e. the latter need not be a minimum phase network).

The function ¥ (@) is directly found graphically or analytically
from the shape of the 215(w) amplitude function and is not affectsd by the
acale factor on this function.l 8(w) is independen‘a of kP (w) and is con-
tinuous with positive slope.l If equation (52) is substituted into (51), it

is clear that a necessary condition for maximum 712(m)|i5 that the equal sign
be used. Thus

Rgg(m) = lle(w)'z cos® (W+ o) = Riz(w) (63)

This means that ths combined matched eclqualizer-loe.d network will require no
more than 1 resistor.l4 Suppose that ,le(w)[ is represented as

IZ,z(w)[ - & Ogwgl (k a positive integer) (54)
I<ngw
LoF
where -
C=2¢C (85)

As k>, the transfer characteristic defined by equation (54)
agproaches the gain shape given by equation (50) (it differs by the factor

Qe -
170104 1838

ph characteristic defined by equation (54) is given
es reference

s
1, pnges 312-315}

: ¥P. (o) 0Lwgl
WP (w) = -1-;- f log coth J%L du = LPl . (56)

1 k‘?z(m) 1w ©

=i

1S
S

belows
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In this equation u = log £/w, where & is the running frequency
variable of integration. The definite integral is of course a function of
W,

The approximate velues of 'f;(w) and Yy(w) are given below for
reference only. They are not used in the derivation, and merely indicate
the nature of these funsctions. They are cqntinuous and monotonic.

~ 20
P, (@)= - k= 0gogl (66a)
Y, (@) -kz 1<ogo (56b)

The integral equation (49) of theorem 2 for the matched flat voltage
squalicer becomes

1 .
sz fi(m) o E:Wl(m) + e(mﬂdw + Cz'fw %{‘;ﬁcosz (k\fz(m) + 6(w))dw = ¥
(6] 1l

The second integral clearly approaches zero as k becomes infinite.
Expanding the squared cosine term, *he first integral may be written as:

%.Jo)l fi(m)dm : -zl— ll [fi(‘*’ &6 ge(mﬂcos qu?l(m) dw

1
+ .;:.‘jo‘ [fi(m) ain ze(mZIsin 2k \Pl(m) dw

Now let ¥{w) = 2P1(w), hence ¥'(w) do = d¥, o = h(¥) so that the second and
third integrals above become:

¥(1) 1 Y1)
: 7 o i
13 (o) = o Sl(b’) cos kYdv + El;(o# . 82(!’) sin ¥YdY¥

where

(¥) = £1(¥) cos 26(%)

A1

fi(‘() cos 26(Y)
¥ () S )

The first of these integrals is essentiaslly the k'th order Fourier
coefficient for a function defined equal to g (¥) in the intervalY (0) to
¥ii), periodic for ally and even in The second is s k'th order Fourier
coefficient for a function defined as equal to gz(Y) over the interval X (0)
to Y(l), periodic and odd in Y. As k becomes large, the Fourier coefficients
approach zero, hence these integrals vanish in the limit k>ow .

3]

cm— -
— B d el

e
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The final representation of the integral constraint for a matched
equalizer with the low pass flat voitage gain of equation (50) is therefore

2521

[

(o)

fi(w) - Ki (matched flat low pass case) (67)

A similar derivation for a flat band pass over the interval wy to w3
(zero gain elsewhere) gives

2 Ei)“wz ri(w) = K, (matohed flat band pass case) (67a)

o |

Both these equations (57) and (657a) sre entirely independent of
whether minimum or non-minimum phase networks are used, but apply only to a

flat voltage gain response of amplitude C over a finita interval with gero
gain elsewhers.

Returning to the low pass case, let

1
J’ £,(0) do = A (58)

[o}

equation (67) may then be written

g% = ;%-(Matched) (59)

i

This equation is independent of whether minimum or non-minimum phase net-
works are used.

For e lossleas squalizer, =quetion (39) may be used directly in
oonnection with equation (50) and placed into the expression of theorem 2.
Thus the lossless equalizer with flet transfer characteristics given by
equation (50) must satisfy:

f?) = i (o) |2 (M2 . -2ﬂ ()
J o £0) Ryple) aw = £,(0) |2),00)[% aw = B ) £,(0) aw (60)
o (o o
or
-2 Ky . - S
C” = —= (Lossless cas») (81)
A
i
and the ratio of ootimum matched and lossless equalizer gains for the flat
transicr g=zs =2nd reactive lcud 18

TR —&J—A—L—A—‘A,‘

Y
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€ (loszsless)
€ (matched)

B. Example of a C-LC Load

As an example of the application of the material given above
suppose it is required to design a fiat woltage equelizer over thes band
0g w1 for & three element load. The load consists of a ocapacitor C' in
shunt with a series circuit of coil L and ocondenser C.

This load impedsncs has zsros at p = o, and p = + Jw] with o = 1/10.*

The Taylor coefficients at these zeros are:

( 1
\P"OO)am-c—,-

(p =+ Joy) e = =

Referring to equations (47) and (48) and neglscting the pole
residue terms:

- Jag .
b "

For the zsro at infinity the weighting function is unity end

1
Al = 0/7 dw = 2
o

For the zero at + jw;, the weighting function is fp(w) =

1

(mz -

and
1

: wy + 1
A .o/ﬂ 2 duz 2 - z1 3 . 2 T *1n =1
A (0® - Wy ) 20}1 (ml - 1) 40 1

(82)

(83)

(84)

(87)

(e8)

*
Progsumed outslde of pass-vand.
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Consider a specific numerical case with
1

C' = =

(e8)
1

L=e=(C= qu

For these conditions ths various constants may be evaluated to give:

A (70)

K,
2 s T
I, " o3p 1.0 )
The only way to satisfy thess constraints simultaneously is to
reduce the velue of K] by using parasitic elements in the equalizer. This

can be done for example by use of a shunt condenser acrosa the equalizer output
and in parallel with the loed of value C'' = 0.2. As a result the maximum
gain of this equalizer is not limited by the capacitance C', but Gy the series

1C oircuitv and the mmximum vaiue of 8 gain ror a low pal tched squalirer

is
n
C= Vs (matonea) (72)
and for a lossless equalizer the maximum gain is
= / =
C = T35 (1ossless) (73)

It is un ®o the deeigner to deuide whether a matched input to the
equalizer system is worth sacrificing for a 40% inocrease in gzain.

C. Design of a Finite Equalizer Network

In the previous discussion ideal characteristics wers assgumed for
the equalizer amplitude response. The voltage gain was presumed absolutely
flat in the pess band, and the cut-off was taken as Iinfinitely sharp. In
order to apply theorem 2 to the design of a finite network, a gain charas-
teristic may be assumed in analytic form (i.e. an even rational funotion
of w which is always positive). The aualyais in such a case involves de-
termination of the Rpp characteristio and its substitution in the integrel
equations to deatermine the maximum gain scale factor. To illustrate this
procedure a simple example will be given for the voltage egualization and

.
e et e e o Y
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matoh of a unit oapacitive termination*. A Butterworth type of low pass
response is assumed for a matched equalirzer

Iz, (@)]2 = £

S (74)

1+

The amplitude of Zle(w)z is down by 1/2 at w = 1 which is considered
the normalized ocut-off frequency. C is & gnin oonstant whose maximum value
is to be determined by applying tneorem 2.

Equation (74) may be faotored to give the spen cirouit transfer
impedance 23:{(p) of the required oombined matched ¢qualizer-load network,
This funotion must have no right half plane poles.

c .
Z,,(p) = (78). -
12 Zrlop el

The impsdance Z1p(p) has the rero of the load at infinity as pre-
soribed by theorem 2 because of the partioular choice of amplitude function
in equation (74).

The real component of Z1g(p) along p = Jo is

2

l =
R, (w) = ¢ (7¢)

12 1+ ®2

and applying equation (63) for the optimum matched egqualizer
2,2
Ry, (@) = B2 (o) = C? %—1—:—“3;-;-2- (77)
1+

The complex impedance Zgp(p) may e cbteined by expanding Rga(w)
in partiel frections as described on pages 204-205 of reference 1. The
result** is

2 0.363 p° + p¢ + 1.066 p + 1
Zoplp) = € 3 )
P + 2.82 p + 4p + 2,682 p <+ i

(78)

This function has the load zero at iiliuity as prescrived by
theorem 2.

The integral constraint (equation (47)) gives for umit oapacitive
load: '

*This example is taxen from a thesis by L. quse for the degree M.E.E. ot the
Polyteohnic Institute of Brooklyn, June'18863.
.

In gener=l if the resulting Zp,(p) funotion does not contain the r!quirod load
zeros, it is neceissary to form new rational functions for Ile(w)l (poseibly
by the use of oomnon numerator and denominator factors) until this regquire-

ment is satisfied.
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242
U"ﬁ R,, do = c? 2-0) . as > {(79)
9 (1 + o*)?
If the definite integral is evaluated, the gain factor C is found
to be
C =1.68 (80)
or
€ = = 0.8¢ (matohed case) (81)

The maximum gain for the completely ideal low pass characteristic
(in the matched case) obtained from equation (59) is

C (1deal) = 0.89 {matched case) (82)
so that the simple characteristic of equation (74) is a reasonable compromise.

The final matohed equalizer plus load is specified by equations (75),

(78) and
le(p) -1

The resultant network is shown in Fig. MRI-13996a. Observe that
the load capacitance is removable leaving a physical equalizer, and only 1
resistor appears in the network.

The design of a lossless equalizer from a specified |Z5(w)[2
characteristic which satisfies theorem 2 is straightforward. The equalizer
network is mersly synthesized from the back end as a reactance 2-port
terminated in a 1 ohm resistor by the Darlington proocedure for the special
oase of an infinite impodance generator.l0 The 1 ohm resistor (input gener-
ator impedance) and load are then removed, and the remaining lossless net-
work is the reguired equalizer.

For the example of equation (74) with

1z, )2 - &

Zy (0) 1-:-31" R?Z(w) (83)
The integral requirement gives

[ o as

G o= 20'25 = 1.19 (lossless equalirer) (84)

The network is shown in Fig. MRI-13696b.

and

*+ This constraint could have been directly obtained from the network aynthesis
by choosing C to give the prescribed load cspacitance,
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